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CHAPTER 1. INTRODUCTION 

Inverse problems are encountered in many fields of science and engineering. The 

inverse theory deals with the development of tools to extract useful information from 

physical measurements. The fitting of a curve to experimental data, as well as the 

problem of remote probing from satellite-borne systems, for example, involve the 

application of inverse theory. 

Some of the fields where we encounter inverse problems are: 

1. Medical tomography. 

2. Plasma diagnostics. 

3. Target recognition. 

4. Earthquake location . 

. 5. Analysis of molecular structure by X-ray diffraction. 

6. Geophysics. 

7. Recovering of defect shapes or profiles of material properties in the field of 

Non-destructive Evaluation (NDE). 

Due to the complexities associated with inverse problem solutions, a lot of effort 

has been expended in the study of these problems. This thesis proposes a novel 

approach using neural networks for solving inverse problems. 
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Interest in neural networks historically has two roots [1] : (1) the desire to 

understand how a biological brain works, and (2) the wish to build machines that can 

perform cognitive tasks at which the human brain excels. Methods of achieving these 

objectives were the focus of intensive research in the field of Artificial Intelligence 

(AI). 

In AI, a problem is solved by building an Expert System. This expert system 

consists of rule & knowledge data base, an inference engine, and an interface. The 

process of building the expert system begins by collecting information about the 

reasoning that governs the problem, whether it is formal information, from text 

books, or informal information, gained from experience. The reasoning is cast in the 

form of rules (IF - THEN statements) which are stored in the knowledge base. The 

inference engine is used to extract information from the knowledge base. If the user 

is not satisfied with the answer, he can interactively change the knowledge base using 

the interface. 

Criticisms against AI include the fact that such approaches fail to simulate the 

operation of the human brain. First, in the area of natural language understanding, 

we cannot find all the rules governing the meaning of words and phrases, because they 

are context sensitive. Another area where AI approaches fail is in pattern recognition. 

Pattern recognition is a basic attribute of human brains as it is essential for recog­

nizing and interacting with objects and persons. Criticism against AI techniques in 

the area of pattern recognition relates to the slowness of such methods. For example, 

when we recognize a person, our brains do not go through a process of searching 

through a large number of stored patterns of human faces to find the one that has 

the features closest to those of the person we see. This process will need a large 
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amount of time, particularly since the flow of signals in biological systems are 10 to 

40 times slower than those of conventional computers. Human brains can retain and 

recall images without attempting to establish the geometrical relations between the 

objects contained in the image. This is in contrast to AI algorithms, where there is 

always a need to use rules. 

Neural networks have emerged in recent years as an outcome of a desire to mimic 

the human brain. In AI we begin by reasoning and go down to decomposing the rea­

soning into rules. The neural networks approach on the contrary begins with a small 

building block, the neuron,. We then proceed to build a system by interconnecting 

a large number of neurons such that the output of the system matches the required 

solution to the problem. Early trials associated with building VLSI neural networks 

are reported in [1]. 

This thesis investigates a neural network approach for solving integral equations. 

We restrict our attention to the Fredholm integral equation of 1st kind which appears 

in many inverse problems. The primary advantage of the proposed method as com­

pared to other computational methods is that it is potentially more stable. This 

is due to the parallel distributed processing structure of neural networks as well as 

the high degree of interconnectivity and feedback. Neural networks also offer the 

characteristics of generalization and error tolerance. A neural network with a large 

number of neurons will continue to function properly even in the case of failure of few 

neurons, whereas the performance of digital computers depends on the correctness of 

each bit of the data. The work described in the thesis consists of two parts. 

In the first part a multilayer back-propagation network is trained using the input 

and output values of the integral equation. The network is then used to recover the 
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correct output when the input is corrupted with noise as is the case in practical field 

measurement systems. 

The second part consists of the development of a Hopfield network for solving 

integral equations. The feasibility of the approach is demonstrated using an appli­

cation in geophysics for reconstructing conductivity and/or permittivity values of a 

multilayered media from reflected wave measurements. Analysis of the method with 

regard to stability and convergence is presented. 

Chapter 2 gives mathematical background of the general inverse problem. The 

ill-posedness of inverse problems, and the use of regularization technique for restor­

ing stability of the solution are discussed. The development of the Fredholm integral 

equation for modeling inverse problems is presented. Chapter 3 first discusses the 

importance of elecromagnetics fields in a wide range of applications. These applica­

tions include detecting and tracking targets using radar, remote sensing studies of 

the vegetation canopy, flaw detection and sizing in nondestructive evaluation (NDE), 

and in geophysical exploration for hydrocarbons, minerals, or groundwater. The 

mathematical analysis of electromagnetic inverse problems is then developed. 

The topic of neural networks is discussed in chapter 4. Section 1 describes 

the multilayer perceptron, and the use of the back-propagation algorithm to train 

it. Section 2 discusses Hopfield neural networks. Digital stochastic networks, the 

continuous deterministic network, and linear programming networks are described. 

Analysis of the networks with regard to convergence and stability is presented. 

Chapter 5 discusses the application of neural networks for solving inverse prob­

lems. Section 1 shows examples of solving inverse problems, described by integral 

equations, using multilayer perceptrons. An application of the algorithm, in the 
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field of flow measurements is discussed. Section 2 discusses the representation of 

inverse problems in the form of a function minimization problem, and the design of 

a Hopfield neural network for performing such minimizations. The use of Hopfield 

linear programming networks for finding the global minimum of the solution is also 

described. 

Chapter 6 presents the application to two electromagnetic inverse problems in 

geophysics. Section 1 discusses the case of a horizontal transmitting loop over hori­

zontally layered media. Section 2 discusses the use of loop transmitter, and receiver 

antennas in a borehole in axially symmetric media of complex permittivity. Sim­

ulation results are presented at the end of the chapter. Chapter 7 presents some· 

concluding remarks. 

Appendix A presents a brief introduction to conventional methods for solving 

inverse problems in geophysics. A specific example of an inverse problem as it relates 

to groundwater exploration is introduced in appendix B. 
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CHAPTER 2. INVERSE PROBLEMS 

The terms "forward problem" and "inverse problem" are used to describe the 

performance of physical and engineering systems. In contrast to "forward problem", 

where the system output is predicted from the model parameters, "inverse problem" 

involves the estimation of model parameters from the measured data. This can be 

summarized as follows: 

Forward Problem: 

model parameters ---+ model ---+ prediction of data 

Inverse Problem: 

data ---+ model ---+ estimation of model parameters 

Mathematically [2] this can be formulated as follows: 

Given: z space of input quantities; 

U space of output quantities; 

IP space of system parameters; 

A(p) system operator from U into Z; 

associated with p E IP 
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The forward problem is defined as follows: 

Given z E Z and p E IP find u:= A(p)z 

Inverse problems can be one of the following two types: 

(a) reconstruction problem 

Given u E U and p E IP solve the equation: Az = u where A:= A(p) 

(b) identification problem 

Given u E U and z E Z find p E IP such that: 

A(p)z = u 

The following sections describe the issue of stability associated with solutions of 

inverse problems and also methods for addressing these issues. 

Ill-Posedness 

In general, the solution to inverse problems is ill-posed. In [2], the definition of 

the term "ill-posed" is defined as follows: 

For a problem represented by Az = u (z E Z,u E U), the problem is 

well-posed in the sense of Hadamard, if the inverse map A-I : U --" Z exists, and 

-is continuous; otherwise, the problem is ill-posed. 

An example of an ill-posed problem is as follows: 

Example: 
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Find z=z( x,y) satisfying: 

inIR x (0,00) 

z(x,O)=o 
oz 

, Oy(x,O) = u(x) x E IR 

where· 1l(x):=Un (x):=n- 1 sin(nx) xEIR, nEIN,n#O 

uo(x):=O 

The solution is [2]: 

n- 2 sin(nx)sinh(ny), (x,y) E IR x (0,00) n E IN 

zo( x, y) ° (x,y) E IR x (0,00) 

vVe see that while Un converges to Uo, Zn does not converge to zoo In other words 

the solution for z does not depend continuously on data u, leading to instability of 

the solution process. 

Restoration of Stability 

As we have seen in the previous section, a major issue in the solution of the 

ill-posed inverse problems is the restoration of stability. This can be achieved by 

using a priori information about the problem. Tihonov [3] showed that the inverse 

mapping U --+ Z is stable if the class of admissible solutions is the compact class Z. 

This can be stated as: for every E > 0, there exists 8( E, Z) such that II U1 - 1[2 II < 8 

implies II Zl - Z2 II < E. This can be expressed in the form of the following theorem [2] 
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Theorem 2.1 Let U and Z be subsets of normalized spaces X and Y respectively, and 

let A : Z --+ U be a continuous mapping. If A is bijective (onto and one- to-one) 

and Z is compact, then A- 1 : U --+ Z is continuous. 

The proof of the theorem can be shown by considering a sequence Un in U with 

u as its limit. This corresponds in Z, to a sequence =n = A-1 (un ), with;; = A-1(u). 

Because Z is compact, a subsequence of Zn will converge to win Z. From continuity 

of A , and the fact that A is injective (one-to-one), one can show that the image of 

w will be u, and w = z. 

The problem now lies in ensuring that the space Z is compact. The solution 

proposed by Tihonov consists of regularization and is described below. 

Regularization and Discrepancy Principle 

Consider the system, 

Az = u (2.1 ) 

For an element u in U , and if u E R(A), where n denotes range, there exists 

a unique -= E Z. However, we can only compute a noisy estimate of u, i.e., we can 

compute ii such that: 

(2.2) 

The second part of the above inequality implies that the signal to noise ratio is 

more than 1. 

If A -1 is not bounded, the set of z will not be bounded, and we need a priori 

constraint expressed by: 
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such that A-1
: A(S) ---+ Z is a continuous mapping 

A family of functions za (s) depending on a parameter a will be called [3] a 

regularized family of approximate solutions if: 

eua(x) = .4[x,za(s)]---+ u(x) when a ---+ 0 

e For every a the functions za( s) belong to the compact class of functions Z 

containing z 

The regularized family will converge uniformly to z( s) when a ---+ o. The 

solution to the regularization problem is achieved by minimizing a cost function jlIa, 

.iYr[z(s),u(x)] = N[z(s),u(x)] + aO[z(s)] 

where N is given by: 

N[z(s),u(x)] =11 A[x,z(s)]- u(x) II 

and O[ z( s)] is the regularizing functional chosen according to the application. Ti­

honov chose 0 as follows: 

O[z(s)] = k(s) II ='(s) II +p(s) II z(s) II (k>O,p>O) 

Theorem 2.2 For every function u, there exists a unique continuous, differentiable 

function za( s) which makes the function il1a [z( s), u( x)] a mzmmum. 

For proof see [3]. 

The choice of the regularization parameter a = a( E) is decided such that for the 

measurements u, the solution za satisfies: 

II Aza - u II = E (2.3) 
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where E is the noise level of the data. The left hand side of (2.3) is known as the 

discrepancy D( a, zC<, u), i.e., 

D( a, zC< ,it) := II AzC< -it II 

Generally, there is a unique value for regularization parameter a 

order to show the uniqueness of a, consider the problem, 

.4.: = U 

If we choose the solution zC< from the set Co 

C, = {z : D( a, :;C<, u) ::; E} 

(2.4) 

a(E). In 

(2.5 ) 

(2.6 ) 

such that zC< has the minimum norm, then the solution zC< will be unique and its 

corresponding discrepancy satisfies: 

D(a,zC<,u)=E (2.7) 

If this is not the case, then from (2.6) we see that: 

D(a, zC< ,it) < E 

and we can find a parameter 0 < t < 1, such that as t ----t 1, we have, 

D(a,tzC<,u) < E 

which implies that tzC< will have a smaller norm than :;C< which contradicts the as­

sumption that zC< has minimum norm. This discussion can be generalized by the 

following theorem[4] 
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Theorem 2.3 For u and ii satisfying(2.2}, the function 0: --+ D(o:, z, =) will be 

continuous, increasing and containing E in its range 

For proof see [4] 

At this point we will illustrate the idea with a typical example of Fredholm 

integral equation, which is the focus of this thesis. 

Fredholm Integral Equation 

The Fredholm integral equation is encountered in different fields of applications. 

The equation can be written in the form: 

h{x)z{x) + lab k(x,y)z(y)dy = u(x) (c :::; x :::; d) 

where: u{x) denotes measured data 

k( x,y), the kernel function represents the conversion process. 

z(x), the required function that represents the system states. 

If h( x) =f. 0 for c :::; x :::; d the equation is of second kind. 

If h(x)=O the equation is said to be of first kind, as shown below. 

lab k(x,y)z{y)dy = u{x) (c :::; x :::; d) 

(2.8) 

(2.9) 

Several problems arise when trying to solve a Fredholm integral equation of the 

first kind, for a given data u( x), even with modest accuracy. The reason for this is 

inherent in the equation itself. For example [4, 5], for any square integrable k( .,.), we 

have 

fo7r k( x, y) sin( my )dy --+ U m (2.10) 
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where 

Urn ~ 0 as m ~ 00 

From equation (2.9), if we add (=rn = sin my) to =(y) then: 

fo7T k{x,y)(z(x) + Asin{my) )dy ~ u{x) as m ~ 00 

For large values of m, the measured datau( x), 

u(x) u(x) + Urn 

A fo7T k{x,y)sin{my)dy 

will correspond to a solution z( x) + Zrn where Zrn := A sin my 

Hence, even an infinitesimal change Urn in U would cause finite change Zrn in z, 

i.e., the equation is unstable. Also, Urn ~ 0 as m ~ 00 faster for flat smooth 

kernels than for sharply peaked kernels. Hence, the success in solving (2.9) depends 

to a large extent on the accuracy of 1l{ x) and the shape of k( x, y). 

Phillips Solution 

Phillips [5] suggested a method for solving the linear equation of the first kind, 

of the form: 

lab k(x,y)f{y)dy = g(x) + c(x) (a::; x::; b) (2.11) 

where c{x) represents the truncation error in g(x). 

In general equation (2.11) is satisfied by a family F of solutions. In order to 

obtain the unique solution f from F, Phillips imposed the constraint of smoothness, 
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i.e. 1 = 13 E :F such that 13 is the smoothest in some sense. This constraint can be 

expressed as 

(2.12) 

Equations (2.11) and (2.12) are solved numerically. From (2.11) we obtain: 

n 

L Wikjdi = 9j + Ej (j=O,l, ... n) (2.13) 
i=O 

which can be written in matrix form as: 

At = fL + f (2.14) 

From (2.12)we get: 

(2.15 ) 

13 can be cast as the vector that minimizes : 

n n 

A L(fi+1 - 2/i + li_1)2 + L E; (2.16) 
i=O i=O 

where A is a positive constant referred to as the Lagrange multiplier. Equation (2.16) 

can be written in the form: 

where, 

Blk = ak-2,1- 4ak-1,1 + 6ak,1 - 4ak+1,1 + Ctk+2,1 

and, aij = ~;. (i,j = O,l, ... n) 
J 

For A = ° 

(2.17) 

(k,l = 0,1, .. . n) 

For A =1= 0, we have equation (2.14). From (2.14), and (2.17), we get: 
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E:::: -)..Bf$ 

f~ = (A + )"B)-lg 

(2.18) 

(2.19) 
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CHAPTER 3. INVERSE PROBLEMS IN ELECTRO MAGNETICS 

Electromagnetic methods are frequently used in a variety of applications ranging 

from medical diagnosis to geophysics. This is largely due to the fact that in elec-

tromagnetic methods, there is no need for physical contact of measuring transducer 

with the system, and thus measurements can be taken easily, even from satellites 

or aircraft. Different measurements can be taken by only changing the frequency 

of operation without the need for changing the experimental setup. vVe will discuss 

here some of the analytical methods that are used in solving inverse problems in 

electromagnetics. 

Differential Inverse Algorithms 

These methods are based on the differential equations governing the fields. Two 

of these methods were discussed in [6] , and [7] namely Cholesky method and the 

method of characteristics. vVe will limit our discussion to the latter algorithm. 

We start with Maxwell's equations: 

(3.1 ) 

VxH (3.2) 
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where complex permittivity Ec is given as: 

1./1 (E .cr) 
Ec = E + J E = - + J -

EO WEo 

Taking the curl of (3.1) and substituting with (3.2), we get 

2 a { . cr aE} V' E=p- (E+J-)-at W at ( 3.3) 

If we consider a steady state solution with E = Ee- iwt , i.e. %t = -jw, we get 

( 3.4) 

Consider the special case of infinite source from y = -00 to Y = 00 at Z = Zm. 

In this case the non-vanishing components are Ey , Hx, and Hz. Consider also the 

case where p is equal to po. From (3.4) we get: 

where, c{z) = ~ , and T(z) = ;«:», with the boundary conditions: 
~OE(Z) 

where, e(x,t) and h(x,t) are measured values. 

Let u(k:z" z, t) be a weighted Fourier transform of Ey(x, z, t) , s.t., 

00 

Ey(x,z,t) = J dkxeik,.xelk,.l(z-zm)u(kx,z,t) 
-00 

;=-1 {u(kx,z,t)} 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 
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(}z 
(}2E 

y 

(}Z2 

18 

Substituting (3.10a)-(3.10c) into (3.5), we get: 

( 3.10a) 

(3.10b) 

(3.10c) 

-1 ,-1 1 (}2 Ey 1 (}Ey 
21k",IF {u z} T F {uzz} - c2 (}t 2 - c2T 8t = 0 (3.11) 

The Fourier transform of (3.11) gives 

with boundary conditions 

Defining travel time T 

Z dz' 

T = J c(z') 
z", 

we get 

dT 1 
= -

dz c(z) 
1 

U z = U, c( z) 

U,' U, 
U zz = ---c 

c2 c' 

(chain rule) 

From (3.12a)-(3.12c) and (3.14a)-(3.14c) we get 

(3.12a) 

(3.12b) 

(3.12c) 

(3.13) 

(3.14a) 

(3.14b) 

(3.14c) 

(3.15a) 
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't+ll.······6····· + :-

't .. ~.:.~~d~~.~ ..... L ..... ~: d't/dt=-1 
· . . · . . · . . · . . · . . · . . · . . · . . 

t -ll. t t + ll. t 

Figure 3.1: Two characteristic curves 

with boundary conditions 

F{et(x,t)} (3.1.5b) 

c(O) [lloF{ht(x,t)} - ~kxIF{et(x~t)}] (3.1.sc) 

. In [8], for an equation of the form: 

(3.16) 

where .4., B, C, T are functions of u, T, t, Ut, U T , we have for the characteristic curves 

B ± JB2 - 4.4.C 
2.4. 

For equation (3.15a) where B = 0, .4. = 1, and C = -1, we get, (Figure 3.1) 

4- (dT) -._ _.J.. C .- dt - -,-1 
char 

(3.li) 

(3.18) 

\Ve express (3.1.5a) in terms of derivatives dUT' dUt, on the characteristic curves 

given in (3.18), where 
au au 

du = -dT + -dt aT at 
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on C± : 

du = dr {au ± au} 
or at 

dU-r = {UTT ± 11-rt )}dr 

dUt = {Ut-r ± 11tt )}dr 

Substituting in (3.15a), we get: 

dU-r =f dUt + [{2Ik",lc - c; }u-r - ~ Utldr = 0 

This can be written in difference form as: 

Therefore, 

[ u-r(r+~'t)l = 

ut(r+~,t) 

where: 

All = A21 = Bll = -B21 = 1 - {2Ik",lc(T) - r(r)} ~ 

A12 = A22 = 1 + Tf-r) 

( ) - ~ r r - c(-r) 

For causality we have 

u(r,t)=O for t S; T 

on C± (3.19) 

(3.20) 
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If we let t = r + .6. in (3.20), we get: 

A [u.( r, r + 2 ~) 1 = 0 

Ut( r, r + 2.6.) 

Therefore: 

Allu.,.(r,r + 2.6.) + A12 uAr,r + 2.6.) = 0 (3.21) 

Substituting 
1 

c.,. ( r) :::::: .6. [c( r + ~) - c( r )] 

equation (3.21) can be written as: 

[ (
.6. ) Ut(r,r + 2.6.)] 

c(r +.6.) = c(r) 2Ikx lc(r).6. - 1 + T(r) u.,.(r,r + 2.6.) (3.22) 

Equation (3.22) is used to propagate solutions for c(r), T(r) from boundary 

conditions values [8]. 

Exact Methods 

Exact methods belong to the class of strategies where the approach is to com-

pute approximately a function which exactly solves the inverse problem. In many 

cases, the approximation arises due to the digital representation of differentiation and 

integration operators. Gel'fand and Levitan proposed these methods in 1951. Exact 

methods were applied for inferring the accoustical impedance of a horizontally layered 

medium [9]. The application of the method in electromagnetic inversion problems is 

found in [6], [10], and [11]. 

Maxwell's equations for electromagnetic wave propagation along the z-axis, nor-

mal to a slab of permittivity E( z) and conductivity 0-( z) reduces to the following 
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equation. 

which is a differential equation of the form 

U:r;r -Utt + A(x)ux + B{x)Ut + C{x)u = 0 

with C(x) =0 

We want to solve for the coefficients of the differential equation. 

In [7], a Schrodinger wave equation is obtained from this differential equation 

for the lossless case using the transform: 

dr 1 

dz c 

Then, normalizing E( r, t) & H{ r, t) by: 

where: 1] = J.loc( r), we get: 

eTT - ett - Ve = 0 

where V = q.,..,. ,q = [c(r)]-1/2 
q 

1 
e(r,t) = -E{r,t) 

y1j 

h{r,t) = yliiH{r,t) 

(Schrodinger equation) 

As explained in [11] we can get V from knowledge of the scattering kernels R±, T± 

which we get directly from measurements using waves which closely approximate a 

delta function. 
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Integral Inverse Methods 

In integral inverse methods, we represent field quantities in the integral equation 

III terms of the source and Green's function. Solutions are obtained by iterative 

solution of the integral equation. 

Green's Function 

Consider a wave equation of the form: 

(3.23) 

where d(r.) represents the source, and f(r.) represents the field. The Green's function 

represents the field f(r.) due to a 8 function source at r.'. 

(3.24) 

The solution of the wave equation is : 

f(r.) = I d(r.')G(r., r.')dv' (3.25) 
vol. 

Following discussions in [12] , we can obtain Green's function as follows: 

Considering the triple Fourier transform: 

00 

F(a) = (27rr~ III F(r.)exp( -jg.r.)dr. 
-00 

00 _ 

F(r.) (27rr~ III F(a)exp(jg.r.)dg 
-00 

dr. = dx dy dz 
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Applying triple Fourier transform to (3.24), we get: 

Right hand side = -(27r t ~ exp( -g.r.') 

On the left hand side, we have the integral: 

(v=1. .. 3) 

U sing Integration by parts, we get I as : 

(3.26) 

If the first term of right hand side of (3.26) equals zero, we can see that the 

Fourier transform of ,PG is given by -0:2G(0:). 

Therefore, 
- -- -

-0:2G(0:) + k2G(0:) = -(27rt 3
/
2exp(-jg.r.) 

6( 0:) = (27r t 3 / 2 exp; - j ~;r.) 
0: -

Taking the inverse Fourier transform of the above equation, we get: 

G(r.,r.') = (27r)-3 J J J exp(~;.~\~ r')) dg 

(27r)-3 J J J exp~20:~~~s ()) dg 

where, R = r - r' , and () is the angle between vectors g and R. If we rotate the 

axes so that R lies on 0:3 , we get: 

00 11" >'211" 

3 J J J exp(jo:R cos ()) G(r.,r.') = (27rt 0:2-k2 0:2 do: sin ()d()d¢ 
0=08=04>=0 
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1 /00 sin( aR) d 
(4 2R) ,-,,2 _ k2 Q a 7r L< -00 

where ;3 = aR and I = kR 

Integrating in the complex domain using the residue theorem, we get: 

(3.27) 

Note that substituting G given in (3.27) into (3.26) assures that the 1st term in 

right hand side is zero. 

In the axisymmetric case the wave equation is modified to : 

Applying the same procedure as was used for the three-dimensional case, and 

using two-dimensional Fourier transform, we get: 

(3.28) 

-00 

Using the substitution a1 = )..cosj3 and a:2 = )..sinj3, we get: 

00 

G(e,e.') = (27rr 2 
/ )..2)..:\2 ["" exp(j)..le - e'l cos(j3 - <jY))dj3 (3.29) 

-00 

where <jY is the angle between Q and (e - e'). Equation (3.29) can be written in the 

form: 
00 H(l)()..1 'I) 

G( I) = (4 )-1 / 0 e - e )"d)" e,e 7r )..2_k2 
-00 
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where H~l) is Hankel function of first kind and zero order. The integration can be 

performed in the complex plane. The integral is equal to (27r'j ( Residue at the pole 

A=k)) 

Approximations of The Wave Equation 

Born Approximation 

For source free region equation (3.23) can be written in the form 

where ko is the wave number in free space and O(rJis given by: 

The field f(r) can be represented by two components 

where foCr.) is the solution in free space, i.e., 

(\72 + k~)fo(r.) = 0 

Substituting (3.31) and (3.32) in (3.30) we get 

(\72 + k~)f!(rJ = -O(rJf(rJ 

Therefore, 

f!(rJ = J G(r - r')O(rJf(rJdr 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 
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Equation (3.34) is exact, but the problem is that fer) in the left hand side 

is a function of incident and scattered fields. The first Born approximation is to 

let f(r..) = foCr) in the integral. A more accurate solution is obtained by using an 

iterative algorithm where f(r..) is represented as 

where, 

Rytov Approximation 

Another approximation used to get the scattered field is Rytov approximation 

[13]. 

Representing the field as a complex phase 

We get in a source free region 

Therefore, 

V.(e<PV</» + k2 e<P = 0 

e<PV2</> + (V</»2e<P + k~e<P = -O(r..) (3.35) 

If we write </>(r..) = q)o(r..) + </>$(r..), where ecPo (!:) = ioed, and substituting in (3.35) 

we get, 

(V </>0)2 + 2V </>o.V </>$ + (V q)$)2 + 

+ V2</>0 + V2</>$ + k~ + O(r..) = 0 (3.36) 
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Knowing that CPo satisfies equation (3.35), with O(r.) = 0 i.e., 

Equation (3.36) becomes: 

(3.37) 

The left hand side in (3.37) can be expressed in another form by the following 

substitution steps: 

and 

'V2 (foCP$) = 'V.'V(focp$) 

'V .(fo 'V cp$ + cp$ 'V 10) 

= 10 'V2 CP$ + 2'V 10.'V cp$ + cp$ 'V2 10 

In (3.38) we use the substitutions: 

'V 10 = 'Ve<l>o 

e<l>°'V CPo 

= 10 'V CPo 

Equation (3.38) becomes: 

2/0 'V CPo. 'V cp$ + 10 'V2 cp$ = 'V2 (foCP$) + k~ 10CP$ 

Substituting (3.39) in (3.37) we get 

('V2 + k~)(/ocp$) = - 10[('VCP$)2 + O(dl 

(3.38) 

(3.39) 
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Therefore, 

(3.40 ) 
Vi 

If we neglect (\74>8)2 with respect to O(r.) we get 

f04>8 = / G(r. - r.')fo{r.')O(r.)dr.' (3.41 ) 
Vi 

Therefore, 4>8 = ~:((~?, where fB(r.) is Born approximation of the field. 

Resolving Power Theory 

This theory was introduced by Backus-Gilbert[14, 15], as they investigated the 

internal structure of the earth from seismic data. Parker [16, 17] applied the method 

for estimating the conductivity profiles in the mantle. Fullagar et al [18] used the 

method to invert frequency sounding for data relating to a horizontal loop antenna. 

Coen[19], and Coen et al [20] used the method to assess the reliability of estimates 

and to compute the resolution of the estimates using a quasi-Newton iterative scheme. 

To understand the theory, we consider the discrete case explained in [21]. Let 

the system be described by: 

Gm=Q 

where: G is the M X N kernel matrix. 

m is the N X 1 system parameter vector. 

do is the M X 1 measured data vector. 

In general, the estimated value of m can be written in the form: 
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where: G-g is the generalized inverse of G. 

dobs is the observed data. 

m e8t =G-g [Gmtrue ] 

=G-gGmtrue 

= R m true 

The matrix R (N[ x AI) is called the Resolution l";/atrix. If R = I( identity 

matrix), then each model parameter is uniquely determined; otherwise, each element 

of m e8t is a linear combination of some or all elements of mtrue. 

vVe can also define Data Resolution Matrix N, where dpre , the predicted values 

of el, is related to N as follows: 

dpre=Gmest 

=GG-gdobs 

= N d
obs 

A measure of goodness of R, and N matrices can be taken as the norm of dif­

ference between resolution matrix and identity matrix I. This is known as Dirichlet 

spread of resolution matrix. The problems encountered may be over-determined, or 

under-determined. For over-determined problems, we can choose the least square er­

ror solution and R can become equal to I. However, for under-determined problems, 

other constraints have to be added to the problem. For instance, to obtain a solution 

that minimizes the L1 or L2 norm, or to get the smoothest solution, the resolution 

matrix R will not be an identity matrix. It can be shown that L2 norm solution 

results in the minimization of Dirichlet spread of R. 
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Backus-Gilbert method considers the case of natural order of data, and therefore, 

choice of spread gives more weight to nearby data. For example, a natural order of 

data is found in the geophysical problem where d represents a function of conductivity 

0' at different depths. 

Fundamental to this scheme are the Frechet kernels {Fi(Z): i=1. .. N} used for 

expressing small changes in the observed data corresponding to a small change 50"('::) 

In 0". 
ex> 

5dfb~ = I Fi(z)50'(.::)dz + 0 1150' 112 (3.42) 
o 

where: 0 II 50" 112-4 0 faster than II 50" II. If (3.42) holds, the data are said to be 

Frechet-differentiable. 

An average value < O"(zo) > is defined by Backus-Gilbert(1968) as the inner 

product of an acceptable 0"('::) with resolution function R( z, zo), [18]. 

ex> 

< O"(zo) >= J R(z,'::o)O"(z)dz 
o 

(3.43) 

where the averaging function ( or the resolution window) is a linear combination of 

Frechet kernels, i.e., 
N 

R(z,zo) = L ai(zo)Fi(Z) (3.44) 
i=1 

If O"I(Z) and 0"2(Z) are distinct acceptable conductivities, then: 
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The coefficients ai('::O) are chosen to minimize the spread 5('::0) defined by Backus 

and Gilbert (1970) as: 

00 

00 

5('::0) = 12 j(.:: - '::0)2 R2(Z, '::o)d.:: 
o 

such that J R(z, .::o)dz = 1 
o 

(3.4.5 ) 

The factor (z - '::0)2 reflects the natural order of data giving more weight to 

nearby data points. Minimizing the spread will give rise to larger variance of the 

average function, i.e., there is a trade-off between spread and variance. 
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CHAPTER 4. NEURAL NETWORKS 

Interest in neural networks within the engineering community is not recent. It 

can be traced back to the early 1940s to the work of McCullugh and Pitts [22]. Some 

work on neural networks was done by few research groups by 1960s. The two most 

active research groups were those of Widrow at Stanford, and Rosenblatt at Cornell 

[23]. Widrow developed the first hardware implementation of neural networks with 

the introduction of the adaptive linear element, or the adaline. Rosenblatt introduced 

the single layer percept ron and the multilayer percept ron. However, interest in neural 

networks was reduced in the 1970s due to the lack of development of learning rules 

for adjusting the weights between the neurons. One of the first learning rules was due 

to Hebb presented in 1957. Here the underlying philosophy is that of unsupervised 

learning, where the learning does not depend on reference data. Supervised learning 

rules were then developed, and the backpropagation algorithm vitalized multilayer 

perceptrons [24]. This lead the dramatic return of neural networks in the 1980s. 

Basically, artificial neural networks attempt to mimic the biological neural sys­

tems with respect to both the neural architectures as well as information processing 

strategies. A simplification of a biological neuron is shown in [24]. A biological neu­

ron consists of a soma, dendrites, and axons. The dendrite brings the input signals to 

the neuron, and the axon carries the output. The axons are connected to dendrites of 
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other cells through synapses. In the soma, a summation of input signals is computed, 

and the neuron will fire if the sum is larger than a threshold. A human brain has 

approximately 1011 neurons and 1014 synapses. 

There are different classes of artificial neural networks based on different network 

architecture and neuron characteristics such as neuron transfer functions and thresh­

old values. Neural networks can also differ in the training rules applied for adjusting 

the weights of synapses. Lippmann [25] has represented a review of different types 

of artificial neural networks. vVe present here two kinds of artificial neural networks, 

the multilayer perceptron, and Hopfield networks, which are used in inverse problem 

solutions. 

Multi-Layer Percept ron 

Multi-layer perceptrons, (Figure 4.1) are feed-forward nets with one or more 

layers of nodes, known as hidden layers, that lie between the input layer and output 

layer. The nodes of the network are non-linear elements, and their transfer function 

is usually chosen to be a sigmoidal function as shown in Figure 4.2. 

The percept ron is commonly used in pattern recognition applications. For a 

certain input vector applied to the perceptron, the output specifies the cluster that 

includes this vector. The net is first trained by applying some known pairs of input­

output vectors to the network. This is known as the training phase. During training, 

the weights are adjusted so that correct output emerges for input vectors in the train­

ing data. The network is then used for computing the output for test data not used 

in the training phase. For example an application of the multilayer perceptron for 

pattern recognition in the field of nondestructive evaluation is presented in [26]. The 
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Figure 4.1: Multi-layer Percept ron 
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Figure 4.2: Sigmoidal function 
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classes represent different defect types, and the patterns represent parameterization 

of signals obtained using the eddy current technique. 

The algorithm commonly used in training the perceptrons IS the well-known 

Back-Propagation Algorithm which is described briefly next. 

Back-Propagation Algorithm 

The objective of the algorithm [27] and [28] is to minimize the error E between 

the output Y computed by the network, and the desired output d, expressed by 

1 M N 

E = - L L(Yj/ - dj/)2 
2 /=1 j=1 

(4.1 ) 

where j spans the output nodes and l spans the samples in the training set. 

Differentiating (4.1) with respect to the nodal inputs and outputs 

oE 
( 4.2) --y·-d· oYj - J J 

oE oE oYj 
( 4.3) --

ox' oy·ox· J J J 

where Xj is the input to node j. The transfer function of a node is taken to be a 

sigmoidal function, i.e for node j, the output Yj is related to the input x j as: 

1 
y. = ---.,---

J 1 + exp( -Xj) 
( 4.4) 

From (4.3), (4.4) we get: 

oE oE 
- = -y·(l- yo) ox - oy. J J 

J J 

( 4.5) 

The derivative of E with respect to the weight Wij from a node i to node j is given 

as: 
aE OXj 

ax' ow--J tJ 

( 4.6) 
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The input x j to node j is the sum of weighted outputs of the lower layer of nodes, 

Therefore: 

From (4.6), we get: 

ox­) 
-- =Yi ow--l) 

oE oE 
OW--lJ 

(l _ c ) 

(4.7) 

( 4.8) 

( 4.9) 

The weight Wij can be changed iteratively to minimize the error E according to 

the rule: 
oE 

wij(k + 1) = wij(k) - TJ ~w--
U 'J 

( 4.10) 

TJ is a gain term. The iteration terminates when ::j =0 , and the error is minimized. 

The algorithm can be summarized by the following steps: 

Step!: assume small random values for the weights. 

Step2: apply first vector Xl for which desired output d is known. 

Step3: Calculate output vector Y corresponding to this input. 

Step4: Adjust weights as follows: 

(4.11) 

Xi is either an output of node i, or is an input to the network. 

If node j is an output node then: 
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If node j is an internal or hidden node then: 

8j = Xj(1- Xj) L 8l wjl 

I 

where 1 goes over all nodes in the layers above node j. 

Convergence is sometimes faster if a momentum term (j is added and weight 

changes are smoothed as follows: 

( 4.12) 

where, 0 :::; a :::; 1, and k is the iteration number 

Step 5: Repeat by going to step 2. 

Hopfield Networks 

In 1982, Hopfield presented the first kind of networks with the objective of 

introducing networks which exhibit collective computational abilities based on neu-

robiology. Hopfield later developed his first model of such neural networks which was 

digital and stochastic. He then extended the work to include continuous and deter-

ministic networks. Hopfield networks are constructed from a large number of simple 

components which can be easily adapted for implementation using integrated circuit 

techniques. These networks are used in many applications, such as image restoration 

[29, 30J. The following sections discuss the Hopfield's stochastic, deterministic, and 

linear programming networks. 
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Stochastic Network 

The first kind of Hopfield neural networks is a digital stochastic network [31] 

shown in Figure 4.3. The network consists of two state neurons where neuron "i" is 

fired if its input is larger than a threshold Ui . The output of each neuron is connected 

to the input of all other neurons, but not to its own input. The network is used to 

store information of n sets of states, and thus can be considered as an associative 

memory. The weight between neuron "i" and neuron "j" is determined according to: 

n 

Tij = I:(2v: - 1 )(2vj - 1) ( 4.13) 
$=1 

where s is the state, Vi is output ot the i'th neuron. 

This network is stochastic; each neuron samples its input at random times. It 

changes its output as follows: 

Vi -+ V? if I:iti Tijv j + Ii < Ui 

-+ vI if I:iti TijVj + Ii > Ui 
( 4.14) 

Hopfield showed that the performance of the networks can be understood by 

considering one global function for the network known as energy function. Although 

the energy is a global quantity, each neuron is oblivious of the fact that its output 

follows a trajectory which causes minimization of the energy function. This is similar 

to the movement of gas particles from high to low density to increase the entropy 

of the system, while each particle is just governed by Newton's laws. The energy 

function "E" of the network is given as follows: 

1 
E - --"" T,··v·v· - " Lv· + "U·v· - 2 ~ ~ tJ t J L...; t t ~ t t 

iti iii 

The change t1E in E due to a change t1vi in a node i 

( 4.15) 
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Figure 4.3: Hopfield stochastic network 

!1E = -(2:: TijVj + 2:: Ii - 2:: U;)ilVi 
j#i 

From (4.14) we see that !1E is always negative. 

ilE < 0 

(4.16) 

The input X of the network (Figure 4.3) implies that we set the neuron outputs 

to values equal to X at time (t=O). After convergence, the output Q of the neurons 

represents the nearest class, from the patterns used in training the network, to the 

pattern X. Hopfield showed that for a network with n neurons, 0.15 n states can be 

remembered before error in recall is severe. 
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Deterministic Network 

Hopfield also developed a deterministic network with continuous valued input 

and output [32]. The network is shown in Figure 4.4. The input of each amplifier is 

grounded through a resistor Pi and a capacitor Ci • The delay introduced by the RC 

circuit simulates the delay of the response of a biological neuron to a firing synapse. 

The output of neuron "i" is connected to the input of neuron "j" through a resistor 

R ij • Since resistors cannot take negative values, a negated form of the output of each 

node is introduced at each amplifier. Should neuron "i" be excitory to neuron "j", 

the resistor Rij is connected to the normal -positive- form of output of amplifier "i". 

Otherwise, when the synapse is inhibitory, the resistor is connected to the negative 

form of the amplifier's output. 

Hopfield et al. showed [33] that a major goal of research in neuroscience is 

to provide systems that achieve "combination of power and speed," that cannot be 

achieved by digital computers, but can be achieved easily in biological neural archi­

tectures. The computational power of biological networks comes from parallelism as 

in the mammalian visual systems. The power also comes from the large degree of 

feedback. The network was applied to solve the well known optimization problem of 

the Traveling Salesman. The network gives good results, as compared with those of 

the digital network which gives results that are little better than a random guess of 

the solution. 

Hopfield also presented [34] the anatomy of a simple model of a neural circuit 

(Figure 4.6) which can be approximated by an analog neural network, assuming that 

the input current from all synapses are simply additive, and synaptic events are fast 

enough. In Figure 4.6, P's are principal neurons and they have axons leaving the 
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T1N T2N TNN 

112 T22 TN2 

T11 T21 T N1 

PI P2 PN 

iSPJ ~ ~ --

Jt - -v2 vN 

Figure 4.4: Hopfield continuous network 
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Figure 4.6: Biological neural network 
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network as outputs. IN's are intrinsic neurons, and Q is an axon that brings external 

input to the neurons. 

The network was used to accomplish different objectives by the proper choice of 

weights [35]. The energy function is formulated in such a way that the decrease in 

energy will move towards a stable state which satisfies the solution. The "T" matrix 

is then chosen to achieve this energy function. An analysis of the convergence prop-

erty of the Hopfield network is presented below. 

Analysis of the network Continuity of the current equation at input node 

of neuron "i" (Figure 4.5) can be written as follows: 

C 
dUi _ ~Vj - Ui Ui I 
i- - ~ - -+ i 

dt j Rij Pi 

where 

Ui is the input potential for amplifier i 

Vi is the output potential for amplifier i 

Ii is the external input current for amplifier i 

Equation (4.17) can be written in the form 

Ci(dui/dt) :::: LTijVj - u;/ Ri + Ii 
j 

The weight Tij represents a conductance connecting neurons i and j. 

(4.17) 

( 4.18) 

The output voltage Vi of neuron i is related to its input Ui by the relationship, 

Vi :::: s( u;) 
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Figure 4. i: Transfer function of amplifier 

Hopfield chose the function s to be a sigmoidal function. A simplified form of 

the transfer function shown in Figure 4.7 was suggested [30] as follows: 

Si = , Ui >, > 0: (4.19) 

-, Ui >, < -0: 

where, is chosen large enough to avoid saturation. 

The energy function of the network is given as: 

(4.20 ) 

Hopfield [32] showed that as the amplifier gain goes to infinity, this continuous 

network with symmetric T will have stable states that correspond to corners of a 

hypercube, i.e. the stable states of a digital-stochastic network. For finite gain, the 

second term in the right hand side of equation (4.20) becomes significant, and the 

minima are displaced from the corners towards the interior of the cube. 
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Equations (4.18), and (4.20) can be written in vector form as follows: 

where: 

du 1 
C-= = Tv - R- u + I dt - --

C := diag[C1 , C2 , ••• , Cnl ,R := diag[Rl' R 2 ,···, Rnl 

Si := J;i Sil(Od~ 

Ti := 1/ Ri 

For symmetric T we get: 

\1E -T'Q + R- 1!1 - I 

_Cd!!. 
dt 

The time derivative of E will be given as: 

where: 

dE 

dt 

C ·T . 
- 'Q !!. 

(chain rule) 

(4.21) 

( 4.22) 

( 4.23) 

( 4.24) 

( 4.25) 

Since we choose si 1 (Vi) to be a monotonic increasing function, from equation 

(4.24) we can conclude that (d E/ d t) will always be negative. Thus, the network 

will converge to a minimum of E and will not oscillate. 
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In [36] some theoretical results govermng the dynamics of the network were 

presented. Two of these theorems are presented here, and are used in determining 

the parameters of the transfer function of the amplifiers (0:,,) in equation (4.19). The 

first theorem relates the norm of:!!. with " elements of T matrix, and input vector I. 

This result can be used to choose the value of ,. 

Theorem: All trajectories of output vector 1!. converge to a bounded region in the 

state space. 

Proof: Consider the function ~V(:!!.) = ~:!!.T RC:!!. 

W(:!!.) :!!.T RCil 

where: Li := ,I:j I Tij I + I Ii I 

:!!.T R( _R- 1:!!. + T1!. + I) 

< - II :!!.112 + II :!!.II II RL II 

-II :!!.II [II:!!.II- II RLII] 

Hence W( u) < 0 for :!!. outside the sphere defined by: 

pu = {:!!. E un, II :!!.II <II RL II} 

The value of , is chosen such that the required the final values of:!!. belong to the 

space un. 
The second theorem relates to the stability of point (1!. = 0). \Ve need the point 

(1!. = 0) to be unstable so that the output will converge to a solution. The relation 

between amplifier inputs and outputs can be expressed in matrix form as: 

( 4.26) 
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From (4.21), and (4.26), we get: 

U sing the notation: 

t d A 

C(~) := C dv S(~) 

F(1!.) := R- 1 S(1!.) 

we get: 

( 4.27) 

Expanding the function 1!. around an equilibrium point vi we get: 

(4.28) 

where Dl is first order differential operator 

Considering the case where we have identical amplifiers with transfer function 

given in (4.19). With identical values of C and p, we get: 

d A 

C T d1!. .5:{~) 

C~T 
a 

R-1 T :~ !iT (~) 

~ R- 1 

a 

where T is the identity matrix. 

From (4.28), we get: 
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For symmetric T, we have 

0: [PApT _ ~R-IVT ppT]v 
C 0: - -

0: [ lIT - P A - -R-]P Q 
C 0: 

where, P := [el' e2, ... ,en] and ei is an orthonormal eigenvector of matrix T. 

From (4.29), point (:lL = 0) will be unstable if for any i, 1 ::; i ::; n: 

1 
).. >-­

t a Ri 

Equation (4.30) can be used in determining an appropriate value for 0:. 

Linear Programming Network 

( 4.29) 

( 4.30) 

Linear programming networks are described in [35], where the minimization of 

cost function is performed subject to linear constraints: 

In the network shown in Figure 4.8, the response time of 'If " amplifiers IS 

negligible compared to "s" amplifiers. 

The differential equation describing the dynamics of the networks can be written 

in the form [35]: 

(4.31) 

The energy function of the network is given as: 
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Figure 4.8: Linear programming network 
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where: 

flT = [1 1. .. 1] 

:Fi := J;i !i(Ode 

~i := J;i s;l(Ode 

Therefore: 

dE 

dt 

.51 

'\l E = -c dM. 
dt 

C ·T . 
- 1!. M. 

Where: 5, and i!. are given in (4.25). 

( 4.32) 

( 4.33) 

Equation (4.33) is similar to (4.24), indicating that the derivative of the energy 

function of a linear programming network is also negative. Thus, the network will 

converge towards a minimum of the energy function and will not oscillate. 

An algorithm for solving inverse problems using neural networks is presented in 

the following chapter. 
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CHAPTER 5. APPLICATION OF NEURAL NETWORKS FOR 

SOLVING INVERSE PROBLEMS 

This chapter discusses solution of inverse problems expressed in the form of Fred­

holm integral equation using the neural networks described in Chapter 4. Section 1 

describes the use of the perceptron network with two illustrative examples. Section 2 

describes a method for solving the inverse problem by casting the problem as an ex-

ercise in energy function minimization and using the Hopfield network as an energy 

minimization tool. 

Solution of Inverse Problems Using the Perceptron 

An inverse problem described by Fredholm Integral equations [37] was first cho­

sen. [The multilayer perceptron network is trained with a priori known solution, for a 

clean version of input, using the back-propagation algorithm. In the testing phase, a 

noisy input function was applied and the network was used to compute the solution 

of the inverse problem. 

The back propagation algorithm described in Chapter 4 which is used for training 

perceptrons has two major problems: 

1. The algorithm is sometimes trapped in the local minima of the squared error 

function. 
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2. The weight coefficients after training are different, depending on the network 

configuration, and the initial values of weights. 

A simple solution to these problems is to use a number of networks each operating 

with different initial weights and then compute the average of their outputs [37]. 

Results 

The algorithm was applied to two examples of Fredholm integral equations used 

by Phillips [5]. The inverse problem solution is very sensitive to the noise in the 

input. In the numerical solution, the truncation error is treated as a source of noise. 

The solution obtained by Phillips is seen to be very sensitive to the value of the 

regularization factor, and the truncation error. 

Example 1 The integral equation is of the form 

[33 k(x - y)z(x)dx = u(y) 

where: 

k(O - 1 + cos 7I"~ - 3 I~I :::; 3 

=0 I~I :::; 3 

u('\) = (6- 1,\ 1)(1 - t cos 71"3).) + 2
9

71" sin ~ 1,\ I :::; 6 

=0 1,\1 :::; 6 

In order to train the neural network, u(y) was sampled at 4 points to obtain 

the input vector with 25 samples of solution z(x) representing the output vector. 
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Networks of the following configuration were used: 

4 nodes for the input layer. 

10 nodes for the hidden layer. 

25 nodes for the output layer. 

The networks were trained starting from four different initial weights. The per-

formance of the networks was then tested using 200 vectors of u(y) corrupted by 

noise with the signal to noise ratio set at 20 dB. The final output was taken to be 

the average of the four network outputs. The average and the standard deviation 

of the 200 output vectors were estimated. In Figure 5.1 the solid curve shows the 

true values of z(x), and the '+' signs show the range of the standard deviation of the 

neural network solutions about the average values. 

Example 2 The integral equation is given as 

/

30 

k(x - y)z{x)dx = u(y) 
-30 

where the numerical values of k(O and U(A) are depicted in Figure 5.2. 

A neural network with 16 input nodes, 10 hidden nodes, and 31 output nodes 

was trained with four different initial weights. 

The network was then tested with 200 vectors of noisy u(y) with the SNR at 

20 dB. As in example 1, the solution was considered to be the average of 4 different 

network outputs corresponding to the different initial values for weights. Average and 

standard deviation of the output vectors were estimated. A plot of the true value of 

z(x) and neural network range of solution are shown in Figure 5.3. 
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Figure .5.1: True value for z(x) and range of neural network solution for example 1 
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Figure .5.2: Kernel k(O and input uP) for example 2 

Application: Flow Measurements 

One of the applications of this algorithm IS In the measurement of fluid flow 

in open and closed conduits. Although measurements of fluid flow can be obtained 

easily by using simple meters, they are often inaccurate. Accurate measurements 

require the use of more sophisticated instrumentation. As an example, the flux can 

be measured in closed conduits using differential pressure meters such as the orifice, 

or flow velocity meters such as the Pitot tube. In the case of open channels, the flow 

can be measured using weirs or current meters. 

A simpler method for measuring the flow is to employ non-intrusive methods 

which involve the use of electromagnetic, or ultrasonic flowmeters [38]. :Models of 

ultrasonic meters that are used for flow measurements in pipelines and open channels 

are described in [39]. 

One way of measuring the flow using ultrasonic methods is to measure the travel 
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time ( tu ) of a pulse traveling upstream, and the travel time( td ) of a pulse traveling 

downstream (Figure 5.4). The flow velocity is then given by [39]: 

U = L2 + D2 [~ _ ~] 
j 2L t t u d 

where L is the axial distance between the two transducers, and D is the diameter of 

the pipe. 

The flow Q is expressed as: 

(5.1 ) 

where, Urn is the mean velocity, and A is the cross sectional area. 

Urn is related to Uj by the following relation [39]: 

f~ u(r) d(2rj D)2 
Urn = Uj 1 

fo u(r) d(2rj D) 
(.5.2) 

where u(r) is the velocity value at radius r. 

From (5.2), we can write Urn as 

Urn = Uj C (5.3) 

where the calibration factor C has to be determined. This factor depends on the 

velocity profile which, in turn, depends on the configuration of the flow conduit. The 

calibration factor C is very sensitive to changes in the velocity profile, and can be 

affected even by a change in the roughness of the wall. 

A neural network approach can be used for solving this problem. The network 

can be trained as shown in the last two examples using input data of travel time cor-

responding to different cords or diagonals, and output corresponding to the discharge 

value obtained by a conventional method. The advantage of using the neural network 
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flow 

Figure .5.4: Ultrasonic measurement of flow 

is that the ultrasonic flow meter can be calibrated using accurate instrumentation in 

field, and then used to obtain reliable measurements without the need for using such 

instrumentation in daily usage. 

Solution of Inverse Problems Using Hopfield Network 

An alternate approach for solving Fredholm integral equations is offered by Hop­

field networks. In order to formulate the integral equation in a suitable framework, 

the system parameters function z(s) in equation (2.9) is first represented [40] as 

.V 

,:(x) = L ViRi(X) ( 5.4) 
i=l 

where Ri is a basis function, and we can take it to be sine, and cosine functions. 

The Fredholm integral equation can therefore be represented in discrete form by 
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the matrix equation 

FV = ~ +!1 (5.5 ) 

where, 

gi = ll(xd 

and !1 represents the noise. 

The solution of (5.5) can be obtained by minimizing an error function of the 

form: 

( 5.6) 

The second term in (5.6) is a regularization term and is chosen to be a smoothness 

constraint on the solution. The parameter A is the Lagrange multiplier. The value 

of this parameter can be obtained if the norm of the noise !1 is known. An iterative 

algorithm for determining the value of A is given in [41,42]. 

To impose the smoothness constraint on the solution, the matrix D is chosen as: 

where di = J: R~/( x )dx. If we choose Ri to be a cosine function for even i, and a sine 

function for odd i, then: 

i = 1,3, ... 

i = 2,4, ... 

where L is the interval of integration. 

Another constraint can be added to the error function using the boundary con-

dition. If the value of z{ x) is known at a certain point p, we have 

(5.7) 
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where elements of matrix Ware basis functions R. In general, zp can be a complex 

quantity. For example, in electromagnetic inverse problem z represents the complex 

permittivity te. For this problem, we have 

1 SiS N 

N < i S 2N 

Ri is a basis function. 

The error function indicating this constraint can be written as: 

The dynamic terms that depends on V in (5.8) can be written in the form: 

where: 

_FT F - >'D - >'1 WTw 

FT g + 2>'1 'liT 'Ij; 
- -p 

(5.9) 

Equation (5.9) can be compared with the energy function of neural network given 

in (4.22) to obtain the values for the resistor weights, and the external input current 
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to the neural network. For the case of a neural network with amplifiers that have the 

transfer function given in (4.19), the network energy function can be written as: 

(5.10) 

where: 

Gi is gain of amplifier i, and Ri is input resistance to amplifier i. 

From (5.9) and (5.10), we get: 

We use the circuit as shown in Figure 5.5. The energy minimization network 

is given in Figure 4.4, and the linear programming network is shown in Figure 4.8. 

The input 1£ of amplifiers of the minimization network is connected to external input 

I for the linear programming network through a switch. The output '!l!.. of linear 

programming network is connected to input I of minimization network. The inputs 

B in Figure 4.8 are chosen to be equal to 9.- of equation (5.5), and the weights D 

of the network are obtained from F in equation (5.5). The transfer function of s 

amplifiers of the linear programming network is similar to the transfer function of 

energy minimization network. The transfer function of J amplifiers of the linear 

programming network is chosen as: 

where: 

J(z) = { 0 
-z 

-E ::; z ::; E 

Z ::; -E, z ~ E 
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1 )1 
I 

Energy minimization Linear prgramming 

network network 

I 
~ 'I' 

u 

Figure ·5 .. 5: Neural network with feedback circuit 

The linear programming circuit will give 0 output when 

(.5.11) 

The switches between the two networks are left off for a period of few time 

constants of the minimization network. The switches are then turned on. If the 

minimization network is trapped in a local minimum~ the output 'Ij; of the linear pro-

gramming network will excite the minimization network again and move the energy 

function away from the local minimum. When condition (.5.11) is satisfied, both net-

works will stop, and the output of the energy minimization network is the desired 

solution. 

Simulation of Energy Minimization 

A modified gradient descent algorithm is used to simulate the minimization of 

the energy function. Gradient descent algorithms depend on starting with an initial 
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value of V, and iteratively changing V, such that, 

fl is a small number that determines the step size, and V' E can be obtained from 

( 5.9) 

V'E = -TtV - It 

The iterations will stop when the gradient of E becomes sufficiently small. 

A modification for the steepest-descent algorithm is shown in [43]. We update 

V such that, at iteration (r+1), vi is given in terms of Vi at iteration r as follows: 

where 8i is given by [43] 

[1 + (v[)2] (~~Y 
8i = --------------~~----~l 

[2:f=l ([1 + (V;)2] (~~y)2] 2 
The modified gradient descent procedure is summarized by the following steps. 

1. Choose a certain value for fl 

2. Calculate E1" , and 8~, ... 8~ 

3. Calculate Etemp which is the energy corresponding to (V:1" + fl1" 8[). 

If Etemp > E1"-l then: 

go to step 2 

4. Calculate the cosine of the angle () between the vectors Q" and Q"-1. 

N 

cos () = I: 8j-1 8j 
j=l 

5. If cos () < 0, then: 
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f-L = f-L/ 4 

go to step 2 

6. Calculate f-Lr+l 

f-L r+1 = f-Lr(.5 + cos4 B) 

7. If 8i for all i is less than a small number 8: 

then: 

terminate; 

else: 

increment r , and go to step 2. 

An application of this algorithm to inverse problems in geophysics is presented in 

the next chapter, where a Hopfield network is developed for inverting electromagnetic 

scattering data from layered media. 
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CHAPTER 6. INVERSE PROBLEM OF SCATTERING FROM 

LAYERED MEDIA 

We consider here the problem of one-dimensional profile inversion. We first 

discuss the case of a horizontally stratified media, and then describe the problem of 

cylindrically stratified media. Both cases lead to a Fredholm integral equation of the 

first kind that can be solved using a neural network. Simulation results of neural 

network implementation are then presented. 

Horizontally Stratified Media 

In this case we assume that the media consist of n layers, where layer i has 

conductivity O"i, as shown in Figure 6.1. The transmitter is a horizontal circular loop, 

situated on or above the surface of first layer. 'When the measurements are taken at 

the center of the loop, the process is known as central induction sounding; and when 

the measurements are taken outside the loop the method is called induction depth 

sounding. The problem of horizontally stratified media has been solved in [18] using 

the method of Backus and Gilbert. 
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x 

Figure 6.1: Horizontally stratified slab 

Forward Problem 

The circular symmetry of the problem allows us to use cylindrical coordinates. 

It can be shown [44] that the electric field components E,., Ez , and the magnetic field 

component H</J vanish for this geometry. We can write Maxwell's curl equations in 

the i'th layer in the following forms [45]: 

oE</J 
0:: 

1 0 
; or (rE</J) 

8H,. oHz -----
0:: or 

where J!</J is the source current density given by: 

I(w)a8(r - a)8(:: + h). 
L</J = a</J 

r 

( 6.1a) 

(6.1b) 

(6.1c) 

( 6.2) 
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We can get the inhomogeneous scalar wave equation of the primary (incident) field 

E<pp' or simply Ep, from equations (6.1a), (6.1b), and (6.1c) 

( 82 ~~_~ 82 k2)E( ~ )_jwpoI(w)8(r-a)8(z+h) 
8 2 + 8 2 + 8 2 + p r,_,w -

r r r r z r 
(6.3) 

The solution of the wave equation is obtained [46] by taking the Hankel transform of 

(6.3). Hankel transform is defined as: 

1t[F{r)] 

1{-l[F(A)] 

1000 F(r)J1(>.r)rdr 

1000 F(A)Jl{>.r)>.d>. 

The Hankel transform of Ep is given by: 

F(A) 

F(r) 

E (
\ ~ ) - _ jW/1oaI{w) J (\ ) e-uo(z+h) 

p A,_,W - 2 1 Aa ---
110 

where: Ui = (>.2 - kl)! 

( 6.4) 

From Boundary conditions at z=O for electric and magnetic fields, the total 

electric field (incident and reflected) is shown to be: 

(6.5) 

where: 

Zi is input impedance of layer i, and is given by: 

Zi = 
E(>.,w) I 
H r ( >., w) at surface of layer i 

JWfli 

Ui 
(6.6) 

and Zi is given by: 

. Zi+l + Z· tanh u·h· zt - z. ' t , 

- t Zi + Zi+l tanh Uihi 
(6.7) 
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Ryu et al. [45] showed that the integral in (6.5) is improper because of the Bessel 

function, especially for large A since: 

Expressing E as 

E{T, z, w) = - jw!,o aI{w) {l (e~:"' Zo ~' Z' ,I - e~A') J, {'\a )J, {,IT )d'\ 

+ 1 e~A' J,{'\a)J,{'\T)d'\ } (6.8) 

- jwpo aI{ w) {l (e~:"' Zo~' Z' ,I - e~A') J, {'\a )J,('\T )d'\ 

ar (1_x 2)1/2 
+- Real . 1 } 

2". /, [=, + 2Jazx - z'x' + r')3/21 (6.9) 

Hr and Hz can be deduced from Ed> using (6.1a) and (6.1b) 

Inverse Problem: 

Recall from Chapter 3 the integral equation : 

f&{r) = J G{r. - r./)O{r./)f(r./)dr.' (6.10) 
vol 

For the low frequency range that is used in this configuration, permittivity E has 

a small effect on the field, as compared to that of u. We can assume that the change 

in field is only due to change in u. If we consider that the field corresponding to u( z) 

is E, and field corresponding to (u( z) + 8u( z)) is Et then from (6.10) we have 

00 • C ( ') 00 

f 1 2 -)UU Z f d 'G( lit 1 1 8E(p,z=0)= dz ko p p-p,z)E (p,z +h) 
WEO 

o 0 

(6.11 ) 
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Transforming to Hankel->' space, we get: 

co 

bE(>.,h,w) = -jwfi J d::'ba-(z')G(>.,::')Et(>.,::' + h) ( 6.12) 
o 

The Green's function can be obtained in terms of E(>., ::'), as will be shown later. 

Also, Et (>., ::' + h) can be approximated by E(>.,::' + h) using Born Approximation. 

Therefore, bE can be expressed in terms of E(>., ::'). In [18] it is shown that: 

bE(>.,h,w) 

(6.13)" 

where we used (6.4) to substitute for Ep 

If we discretize 0"( z'), such that conductivity 0" is assumed constant at a value of 

O"i in the region ( Zi :::; Z :::; ::i+l) , then (6.13) will be of the form: 

(6.14) 

where: 

9i (6.15) 
Zi+1 J E2(>.,z',w)dz' (6.16) 

The evaluation of Ji in (6.16) is given in [18] as follows: The general solution of 

E in i'th layer is a combination of up-going and down-going plane waves. So we can 

express E(>., z, w) as follows: 

(6.17) 
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Ai and Bi are given hy recursive formulas as 

( 6.18) 

( 6.19) 

Zi, and Zi are given in (6.6) and (6.7). 

Taking the inverse Hankel-transform of (6.14), we get: 

8E(R,h,w) ( 6.20) 

(6.21) 

To derive a similar equation for the case when measured data are Hr and Hz we 

use equations (6.1a) and (6.1h). 

From (6.1a) and (6.20), and noting that e tloh in (6.20) is actually etlo(h+z)lz=o, we 

get: 

WI'~J(w) 1 ;~~~:~ U,(>.R),( !ld~ (6.22) 

= F;!l (6.23) 

From (6.1h) and (6.20) we get: 

(6.24) 

(6.25 ) 
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A set of equations representing different measurements for either equation (6.21), 

(6.23), or (6.25) can be written in matrix form as: 

(6.26) 

where: 

F is a matrix with rows equal to F;, F~ or F; 

Elements of d. represent different measurements corresponding to different fre­

quencies (Parameteric Sounding) or different receiver locations (Geometric Sound­

ing.) 

A Hopfield neural network can be developed to solve the integral equation de­

scribed in (6.26) as shown in Chapter 5. 

Radially Inhomogeneous Slab 

'rVe assume here that the media consist of cylindrical layers, where lay~r i has 

conductivity O"i, and permittivity ti, (Figure 6.2). The transmitter is a circular an­

tenna. Receivers are also circular antennas that are located at different positions 

Zi. In this problem, we are trying to reconstruct permittivity and conductivity of 

different sub annuli of the slab. The inversion problem of cylindrically stratified lossy 

media is introduced in [10]. The formulation of this problem simulates a deep prop­

agation tool (DPT) used for dielectric logging in a borehole described in Appendix 

A. 
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1 2 3 

Figure 6.2: Coaxial cylinders model 



www.manaraa.com

i4 

Forward Problem 

We follow here the procedure given by Chew [4i] to solve the forward problem. 

First, consider the solution of the wave equation of a small loop antenna of radius a. 

where 

\72 Eq, = - \7 x \7 x Erf> 

1 

p p<p ~ 

1 
8 8 
8p 0 8z P 

o pErf> 0 

o Eel> A 1 0 ( E ) A --p+ -- P eI> Z 
0:: pop 

p P<P :: 

8 8 \7 x \7 x Et/; = - 0 8p 8z P 
8E4> 0 ~:p(pEq,) - 8z 

Therefore the wave equation (6.27) can be written in the form: 

Kong [48] gave the solution of equation (6.28) as: 

where: , = Jp - k; 

(6.2i) 

(6.28) 

(6.29) 
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Calculating H = (ljjWJ.L)'v x E and matching boundary conditions on p = a, 

such that E,p is continuous, and equating \7 x Hz to the current density I in the loop, 

where I is given by: 

I = ¢>J8(p - a)8(z) 

we get [47] 

(6.30) 

There is an analogy between this problem and a transmission line, as shown by 

Wait [49] (Figure 6.3). The voltage at any point is the sum of incident and reflected 

voltages. The field will be a spectrum of cylindrical waves of Hankel and Bessel. 

functions [47]. Hankel function is unbounded at the origin and Bessel function is 

bounded at the origin. Therefore, reflected waves are assumed to be Bessel functions 

and incident waves are assumed to be Hankel functions, (Figure 6.4). We assume 

that the transmission coefficient from section (m-1) to section m is Tm-1,m , and the 

reflection coefficient from section (m-1) to section (m) is r m,m-l . 

At section m, the total field will be a summation of Bessel and Hankel functions, 

which can be written in the form: 

The Hankel wave at section m is proportional to the sum of incident Hankel 

wave from section (m-1) to m, and reflected Bessel wave from m to (m-1), therefore: 

(6.31 ) 

Similarly for the Bessel wave in section m, we get: 

(6.32) 
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Figure 6.3: Transmission line analogy 
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Figure 6.4: Transmission and reflection of Hankel and Bessel waves 
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From (6.31) 

A m 

From (6.32), and (6.33) 

i7 

Am- 1Tm- 1 ,m 
1 - Emf m,m-l 

Al IT Tm - 1 ,m 

m=2 1 - Emf m,m-l 
(6.33) 

(6.34) 

Equations (6.33), (6.34) give the recursive relations for .4.m ,and Em respectively. 

Therefore, we can determine all Am and Em in terms of AI, En, where: 

Al = Jd /1 a), and a is the radius of antenna 

En = 0 because there is no reflection. 

\Ve are left with determining Tm +1 ,m, Tm ,m+1, f m,m+ll and r m,m-l' 

From (6.30), Emr/>, the electric field in section m can be given by [47]: 

(m ::; n) (6.35) 
-00 

From continuity of E¢ at Rm - 1 , (Figure 6.4): 

(6.36) 

From continuity of Hz, where Hz is given by: 
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we get: 

(6.37) 

Equations(6.36) & (6.37) are two equations in Tm,m-l, r m,m-h and we can sim-

r m,m+l, we can get Am, Em from (6.33) and (6.34), and therefore, we can get Em¢ 

from (6.35) 

Inverse Problem 

The formulation and numerical solutions of the corresponding inverse problems 

are given in [10J. The algorithm can be summarized as follows: 

For a circular loop antenna, the current density J. is given by: 

J.. = I 5(p - p')5(:: - ::') 

The wave equation with permittivity €~ is : 

'V2E~ - 12E~ + k~€~E~ = -jwI115(p - p')5(z - z') 
p 

The Green's function for this equation is the solution of: 

Therefore, 

(6.38) 

(6.39) 

(6.40) 
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The problem is to solve for the configuration Ec(p), knowing the field EO(p, kz), 

corresponding to configuration EO(p), which is derived from the forward model, and 

measurements of the field E( R, ::;) at radius R, and locations ::;i. 

From (6.40) 

jWj101 aG( R, a,::) 

where G, GO are Green's functions corresponding to E, EO respectively. 

From (6.35): 
• 00 

G(R,::) = J J dkz ejkzzAdHil)(,lR) + B1J1h1R)] 
-00 

• 00 

GO(p, z) = ~ J dk= ejkz= Am[Hp)(r mP) + BmJl(r mP)] 
-00 

As shown in Chapter 3, the scattered field is given by: 

E; = J GO(r - r')k~8EcEc/>(T..')dr' 
volume 

where: bEc = Ec - E~ 

Therefore: 

(6.41) 

(6.42) 

( 6.43) 

( 6.44) 

E(p,z) - EO(p,z) = 1 7 GO[(p - p'),(z - =')]k~8EcE4>(p',z')dp'dz' (6.45) 
='=-00 p=Rr 

Ro 00 

G(p,a,z) - GO(p,a,::) = J k5bcc dp' J dz'Co(p,P',z - z')G(p',a,z') (6.46) 
p=Rr =':::::-00 

, v------------' 
convolution 
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where, Rr is the inner diameter of the slab, and Ro is the outer diameter. 

If we take Fourier transform of the above equation, we obtain: 

Ro 

g(p,a,kz) -l(p,a,kz) = 27rk~! dp' 8Ee g(p',a,kz)l(p,p',k,,} 
Rr 

Considering a receiver of radius R, we get: 

Ro 

g(R,a,kz) - gO(R,a,kz) = 27rk~! dp' bEe g(p',a,kz)gO(R,p',k:J 
Rr 

(6.47) 

( 6.48) 

If bE is small enough, then 9 in the integral of equation (6.48) can be replaced 

by gO (using Born approximation), and we have 

Ro 

g(R,a,kz ) -l(R,a,kz) = 27rk~! dp' bEe{P') l(p',a,kz)l(R,a,kz) (6.49) 

Rr 

Equation (6.49) can be written in the form 

Ro 

he(kz) = ! dp'Qe(p')Ke(p,k z ) ( 6.50) 
Rr 

where: 

Qe(P') = 27rk6bEe 

Ke(P, kz) = gO(p', a, kz )gO( R, a, kz) 

Subscript c indicates that the quantity is complex. 

Equation( 6.50) can be written in discretized form using a set of N basis functions 

Ri(P), as follows: 

(6.51) 

where: 
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I:i~l VcRi( p) = Q c(p) 

FCij = f:o Kc(p, kzdRj(p )dp 

Equation (6.51) can be changed to a Fredholm integral equation form with real 

variables of the form: 

(6.52) 

where: 

hi :=R{hcj} i = 2j - 1, j = 1,2, ... ,1\1 

:= ~{hcj} i = 2j, j = 1, 2, ... , 111 

R{hcj } is the real part of hcj , and ~{hcj} is the imaginary part. 

i=1,2, ... N 

i = N + 1, N + 2, ... ,2 * N 

R{F .. } Cll i = 1,3, ... l:Sj<N 

Fcij := 
-~{ FCi(j-N)} i = 1,3, ... N<j<2*N 

~{Fcij} i = 2,4, ... l:Sj<N 

R{Fci(j-N)} i = 2,4, ... N<j<2*N 

Another method for converting (6.51) to a real valued equation, shown in [20], 

consists of using only amplitude measurements of the scattered electric field. This 

results in 
Ro 

J dp'Qc(p')Kc(p', kz) = 89~(kz) (6.53) 
RI 



www.manaraa.com

82 

D9° 
with R{-o} = Dlog III 

9 

fRo '{ {Kc} {Kc} DO"(P)} 1 0 
dp R go DE(p) - S go WEo = Dlog 9 I 

RI 

( 6.54) 

which is in the form of a Fredholm equation. 

Expressing DE, and carp) in the form of summation of basis functions Ri, we have 
WEQ 

DO" 
WEo(p) 

i=l 

Equation (6.54) can be written in the form: 

where: 

h· t 

{ 

~i 
Va(i-N) i = N + 1, N + 2, ... ,2 * N 

i = 1,2, .. . ,N 

p. 
tJ l:Sj:SN 

(6.55). 

(6.56 ) 
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Summary of Algorithm 

The step by step procedure for performing the inversion is given below. 

1. Obtain measurements of Eq,( R, z) at different locations 'z'. 

2. Normalize Eq,(R,z) to get G(R,z) as in (6.42). 

3. Compute Fourier transform to get g( R, a, kz ). 

4. Assume initial guess for complex permittivity tc . 

5. From the forward model get gO(p, a, kz) at n points of radius p . 

6. For complex valued measurements, substitute in the following equation: 

Ro 

g(R, k,J -l(R, kz) = 2irk~ J dp' btc(p') gO(p', kz)gO(R, kz) 

Rr 

and change the equation in terms of real variables which represent the real and 

imaginary parts of the complex variables. 

For the case of real valued amplitude measurements only, use the following 

equation: 

7. Cast the integral equation in a discretized form. 

8. Use neural network implementation as shown in Chapter 5 to obtain solution 

for tc . 

9. Use the obtained tc as initial guess, and go to step 4. 
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Simulation Results 

In simulating the forward problem, the frequency was chosen to be 10 MHz. 

The radii of the transmitter and the receiver were chosen to be .5 cm each. NAG 

subroutine S17DEF was used to obtain the Bessel function for complex arguments, 

and NAG subroutine S17DLF was used to obtain the Hankel function for complex 

arguments. 

A modified gradient descent algorithm is used to simulate the minimization of 

the energy function as described in Chapter 5. 

In [10], it was shown that the Lagrange multiplier A should be chosen to be large 

in the first few iterations to give more weight to the smoothness constraint. As the 

iterations progress, the value of ,\ is decreased in order to expedite minimization of 

the first term of the energy function. The values for A in the simulation were chosen 

to be .005, .003, and .001 for the first three iterations respectively. The parameter Al 

is chosen to be high. It was chosen to be 10 in order to ensure that Ec takes free space 

values on the surface of borehole. Figure (6.5) shows the assumed permittivity E, and 

loss tangent w:o' Figures (6.6), and (6.7) show the initial values, and reconstructed 

values after first, second and third iterations. Figures (6.8), and (6.9) show the 

reconstructed values using the amplitude of the scattered wave. 
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CHAPTER 7. CONCLUSIONS 

This thesis investigates a new approach for solving inverse problems that can 

be cast in the form of a Fredholm integral equation of the first kind. The approach 

uses artificial neural networks. Neural networks offer the advantage of exceptional 

computational ability due to the high degree of parallelism and interconnectivity. 

This ability makes the neural networks attractive in many fields of engineering and 

SCIence. 

In this thesis, two kinds of neural networks are used for solving inverse problems. 

The first kind is the multilayer perceptron network. In the training phase, the per­

ceptron is trained using the input and output of the integral equation. Disadvantages 

of the perceptron include the dependency of the final values of the network weights 

on the initial values, and the possibility that the network may be trapped in a lo­

cal minimum. To overcome these disadvantages, different networks are trained, each 

with different initial weights, and the output is determined by calculating the average 

of the outputs of all the networks. After completing the training phase, the output 

of the perceptron is computed when the input data is contaminated with noise. The 

output is found to converge to the correct solution. 

The second kind of neural network used is the Hopfield network. Two appli­

cations of electromagnetic inverse problems in geophysics are discussed. The first 
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application assumes horizontally stratified media, and the second assumes cylindri­

cally stratified media. The formulation in both cases leads to Fredholm integral 

equation which can be cast in a discretized form assuming the required profile to be 

the sum of weighted basis functions. The formulation can be developed in terms of the 

amplitudes of field measurements, thus avoiding the need for phase measurements. 

The design of the Hopfield network begins by writing an energy function for the 

inverse problem. This energy function consists of an error term and constraint terms. 

Because of the non-uniqueness of the solution, a priori information has to be used 

in the form of constraints. The types of constraints imposed in the formulation are 

smoothness constraint, which is reduced progressively during the iterative procedure, 

and constraints due to boundary conditions. The energy function obtained for the 

problem is then compared with the energy function of the neural network, thereby 

deriving the weights of the Hopfield network. Analysis for determining the limits on 

the parameters of amplifiers for the network to converge to the required solution has 

been performed. 

To overcome the problem of getting trapped in a local minimum, the use of a 

linear programming Hopfield network connected to the energy minimization network 

is suggested. Analysis of the stability of both networks is presented, and it is shown 

the both network will not oscillate. Simulation results, based on the modified gradient 

descent algorithm, for reconstructing permittivity and conductivity for cylindrically 

stratified media are presented. 

The application of neural networks in solving practical inverse problem will re­

quire the use of a large number of neurons. For Hopfield network this necessitates 

the use of a large number of amplifiers and connecting resistors. However, the imple-
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mentation of the network is finding increasing interest with the emergence of optical 

techniques [50] and VLSI techniques. There are different ways to make the synaptic 

weights adjustable for VLSI implementation [24]. One method is to implement the 

weight as an array of resistors and use a memory where each bit controls switching 

of each resistor. The weights can also be made programmable by implementing the 

weights as differential amplifiers driven by a current source. EEPROM storage cells 

are used to inject charges at the floating gate for the current source transistor to 

control the input current to amplifiers. Thus the differential amplifier will perform as 

a programmable weight with the value of weight related to trapped charge. Digitally 

programmable synapses are possible where a weight is implemented by a resistor 

connected through a switch to the amplifier. The switch is turned on and off with 

duty cycle controlled by numbers stored in a memory. The average current passing 

to the amplifier and thus the magnitude of the weight is determined by the ratio of 

the time the switch is on relative to the whole cycle. 

With the growing interest in implementation issues, it is inevitable that the 

neurocomputer will emerge as the sixth generation computing machine [24], making 

the proposed approach, for solving inverse problems, very promising. 
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APPENDIX A. GEOPHYSICS 

Geophysics is an important field where the application of inverse problems theory 

plays a major role. The range of of geophysical survey methods covers a broad area. 

The methods that are used for geophysical survey can be divided into two categories, 

based on whether the source used is natural or artificial. 

Geophysical exploration is applied in different fields. These include: 

1. The Search of Hydrocarbons 

2. Mineral Exploration 

3. Engineering Geology 

4. Investigation of the Earth's Crust 

Geophysical Surveying Methods 

The different surveying techniques used in geophysics are discussed in [51]. These 

techniques are described briefly below. 

Seismic Methods 

Application of these methods date back to early the 1920s. The method, used 

to detect surface boundaries, can be used on land or at sea. There are two categories 

of such methods, namely, Seismic Reflection, and Seismic Refraction surveying. In 
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the first method, the travel time of reflected waves from interfaces of subsurfaces 

are measured. In the second method, the transmitter, and receiver are placed apart 

and the time of return after traveling through the ground along refracted ray paths 

is measured. This method can locate interfaces of different seismic velocity bodies 

and is applicable also for detecting bodies with smoothly varying acoustic impedance. 

Gravity Surveying 

The basis of gravity surveying methods is based on Newton's law of attraction 

where the force F between two masses m, and M is given by 

F 

where: G is Gravitational Constant 

M is the mass of earth 

R is the mean radius of earth 

g is the acceleration caused by gravity 

An underground zone with a density different from the surroundings will cause a 

localized perturbation in the gravitational field, known as a gravity anomaly. Gravity 

methods can be used to locate hydrocarbon traps and sedimentary basins. They can 

also be used in studying the shape of earth. 

Magnetic Surveying 

The aim of magnetic surveying is to detect the anomalies in the earth's magnetic 

field that come from magnetic properties of some of underlying materials. 
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Magnetic survey can be used on earth, at sea or in the air. \Vith the use of 

magnetic surveying techniques, information about thick sedimentary cover can be 

revealed, particularly if some magnetic materials are present within the sedimentary 

sequence. In the absence of magnetic sediment, the survey data can give information 

about the crystalline basement. 

Electrical Surveying 

Resistivity sounding is the most frequently used method in electrical surveying. 

The method was proposed by Conrad Schlumberger in 1912. This method can be 

used to investigate the change in resistivity with depth (Vertical Electrical Sounding 

VES) or lateral change in resistivity( Constant Separation Traversing CST). 

The method depends on injecting current into the ground using current elec­

trodes and measuring the potential using potential electrodes [52J. From the values 

of current and potential we estimate the apparent resistivity. One method of inter-

preting the apparent resistivity is to draw a curve of apparent resistivity versus a 

parameter a where a is related to the distance between the current electrodes. Differ-

ent parts of the curve are matched with master curves [51J prepared for dimensionless 

quantities (Pal PI) vs. (al z), where pa is the apparent resistivity, Ph and Zl are the 

first layer resistivity and depth respectively. A more accurate method is suggested 

by Koefoed [53J. For a current source] in horizontally stratified media, the potential 

V at a distance r from the current source can be represented as: 
00 

V = PI] J K{A)Jo{Ar)dA 
211" 

o 

Where, PI is the upper layer resistivity, and K is the kernel function which can 

be obtained using recursive relationships. 
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Defining a function Ti("\) which is called the resistivity transform for layer i 

an integral equation relationship can be found between apparent resistivity and T(A). 

Electromagnetic Methods 

Electromagnetic methods are particularly advantageous in geophysics due to the 

the fact that a wide range of frequencies can be employed. This gives considerable 

flexibility making the method applicable to a wide variety of applications. A survey 

of the different frequency ranges are described below. 

Geophysics Induction Banks [54] worked on determining electrical con-

ductivity of the upper mantle from the geomagnetic spectrum in the range 0.003 to 

0.25 cycle/day. Parker [16] worked on the same data of Banks using Backus-Gilbert 

method. Weidelt [55] worked on similar problems at Uckermiinde with period range 

from 50 sec to 24 hr. 

Low Frequency Electromagnetic methods depend on measuring the scat-

tered field from incident waves, for determining the conductivity (J' and the permit­

tivity E of the scatterer. For low frequency up to KHz range, the (J' term will 

be dominant in the wave equation, and determining (J' can lend insight about the 

material [56]. 

Different configurations can be used to obtain conductivity of multilayered earth 

[57]. The best configuration [58] is to use a transmitter and a receiver of horizontal 
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coils. For this case we have 

00 

Z/Zo = 1 - J R(y)e3(x-Y)Jo(eX-Y)dy 
-00 

where: 

Z is the measured mutual impedance of the ratio between receiver 

voltage and transmitter current. 

Zo is the mutual impedance in free space. 

while: 

x = In{ T ), and T is coil spacing. 

R is kernel and is given by the following recursive relation: 

R(>.) = RO,n(>.) 

+ R ( ') -2dv· R . ,x = Vi-l,i i,n /\ e " 
(t-l),n() 1 + R (,x) -2dv 

V· t 

k~ 
t 

Vi-I,i i,n e I' 

o 

The above integration can be performed using digital filter techniques. 

Very High Frequency For very high frequency case, the dominant pa-

rarneter in wave equation is c', the real part of Ce. A logging tool, Electromagnetic 

wave propagation tool (EPT), was proposed by Calvert and Rau [59] that works at 1.1 

GHz. An interesting property was found by Poley et al. [60J which showed that c' is 

independent of water salinity for frequencies above 200 MHz. This fact is of interest 
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to the petroleum industry where it is required to differentiate between water and oil, 

without the knowledge of salinity of water. 

The EPT consists of two transmitting and two receiving antennas in a vertical 

configuration T -R-R-T. The antennas are cavity-backed slot antennas with slot length 

transverse to the borehole axis. 

We can measure the quantity tp/c (calculated travel time) where: 

~<P is the phase shift between the two receivers, and L is the distance between them. 

The travel time can be related to the properties of the formation by : 

, 
~(Vl + tan28 + 1) 
2Eoc 

Where, c= 3 x 108 is the velocity of light in a vacuum, and tan 8 = / / E' is the 

ratio of real to imaginary parts of permittivity. 

In [61], a computer simultation is performed to determine the deviation of tplc 

from tp/, in the real case where the incident wave is not a plane wave. 

High Frequency A device that is used for dielectric logging in a borehole 

in the MHz range was proposed by Huchital(1980) [62], and is known as DPT ( Deep 

Propagation Tool). Using a relative measurement of phase and amplitude at pairs 

of receivers, we can derive information of the dielectric constant and conductivity. 

As the DPT works in a lower frequency range than the EPT, it can achieve deeper 

investigation than EPT. Analysis of the device is shown in [47]. The DPT can be 

used to determine the presence of hydrocarbons in zones of variable water resistivity. 
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APPENDIX B. GROUNDWATER EXPLORATION 

The problem of groundwater exploration is addressed using different geophysical 

methods. Gravity survey methods are used to determine the form and size of porous 

sedimentary deposits. Seismic reflection techniques provide strucural information and 

seismic refraction techniques provide information on water table, buried channels, and 

gravel-filled valleys that help to locate groundwater. Magnetic methods are rarely 

used. 

The electrical techniques are the most widely used in hydrology. Resistivity 

information can be used to detect presence of fresh groundwater, since resistivity 

depends on salinity. 

Application of electromagnetic sounding in groundwater exploration problems 

seems to be attractive for different reasons [58, 63]: 

1. A change in depth information is achieved by changing frequency rather than 
moving electrodes in resistivity sounding. 

2. We avoid problems of introducing the current into ground as this becomes dif­
ficult in arid areas. 

3. Electromagnetic measurements can be carried out from aircraft, and helicopters. 

In [64], 16 vertical electrical soundings were made. In order to solve the equiv-
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alence problem (non-uniqueness of interpretation of data), seIsmIC refraction was 

carried out at some selected places. In [58], electromagnetic sounding was applied in 

two arid areas in south Tunisia. Comparison between results of EM sounding and 

drilling showed satisfactory agreement. 

In [56], resistivity sounding was applied in the islands of Oahu and Hawaii. 

On the island of Hawaii, an exploratory well drilled to a depth of 1001 ft ( prior 

to resistivity survey) proved that the well is dry. Interpretation of deep soundings 

suggested that the minimum depth of a conductive layer, which may represent basalt 

saturated with fresh water was about 2700 ft. 

In [65], a geoelectrical investigation was done in an area of northwestern Missouri, 

which was previously explored by drill holes. It was found that resistivity depth 

sounding can partially localize and determine the thickness and depth of near-surface 

and basal fresh-water bearing gravel bodies in glacial deposits. 
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